Danhua Zhang

PhD candidate, University of Minnesota, Minneapolis, USA zhangdanhua3110@gmail.com — 651-747-6482 — LinkedIn — Google Scholar — Home Page

RESEARCH INTERESTS

Focused on **3D** user interface design for mixed reality applications, particularly in interdisciplinary fields, my work to date has addressed challenges in virtual reality (VR) and human-computer interaction (HCI), developing user interfaces for applications in virtual agents, healthcare, education, training, social behavior, and motion sickness. Building on this foundation, *I* am now shifting my research toward integrating artificial intelligence and multimodal sensing to enable more adaptive and intelligent virtual agents. My future work will explore how AI-driven models can enhance virtual agent capabilities by leveraging multimodal data—including speech, vision, and gesture—to create more natural, personalized, and context-aware interactions in immersive environments.

EDUCATION

University of Minnesota Twin Cities, Minneapolis, MN	Sep. 2019 — Present
Ph.D in Computer Science	
University of Minnesota Twin Cities, Minneapolis, MN	Sep. 2017 — Dec. 2020
M.S in Computer Science	
Sun Yat-sen University, Guangzhou, China	Aug. 2013 — June 2017
B.S in Information and Computing Science	

SKILLS

- Programming: C/C++, C#, Python, PyTorch, TypeScript, JavaScript
- Game Engine: Unity, Unreal Engine
- XR Tools: OpenXR, VRPN, Photon PUN 2
- 3D Graphics & Modeling: GLSL/HLSL, Blender, Character Creator, iClone, Maya
- Methodologies: user experience research, quantitative & quanlitative analysis, data visualization

SELECTED PUBLICATIONS

- Nie, T., Hutton, C., Cantory, V., **Zhang, D.**, DeGuzman, J., Interrante V., Adhanom I., and Rosenberg, E.S. (2025). Peripheral teleportation: A rest frame design to mitigate cybersickness during virtual locomotion. IEEE Transactions on Visualization and Computer Graphics, 31(5), 2891–2900.
- Huang, Y., **Zhang, D.** and Rosenberg, E.S., (2024). Direction-based authentication: Combining symbolic input and contextual cues for virtual reality password entry. 2024 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 681–689.
- Huang, Y., Zhang, D. and Rosenberg, E.S. (2023). DBA: Direction-based authentication in virtual reality.
 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 953–954.
- Zhang, D., Khadar, M., Schumacher, B., Raveendra, M., Adeniyi, S., Wu, F., Aseeri, S. and Rosenberg, E.S. (2021). Covid-vision: A virtual reality experience to encourage mindfulness of social distancing in public spaces. 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 697–698.

RESEARCH EXPERIENCE

Interaction with 3D Virtual Agent in VR

June 2024 - Present

- Developed a framework integrating 5 models, including 3 LLM-based models with distinct functionalities to process multi-modal input data, enabling spatial and verbal interaction with a 3D virtual agent in VR.
- Deployed the framework on a scalable server infrastructure, enabling real-time interactions with low latency.
- Built a VR environment with interactive 3D avatars, designed to support natural communication and spatial interaction for immersive user experiences.

- Collaborated with 2 orthopedic experts to build a novel training system for a specialized knee surgery procedure in VR, recognized by the university's board of regents for its innovation.
- Created a virtual operation room scenario in Unity with 12+ customized 3D medical instrument models in Blender, enhancing immersion for surgical training.
- Developed an interactive video system with automatic pauses at 8 key critical learning points, panels with knowledge point summary, manual interaction with instruments and anatomy model, received high evaluation scores from 6 surgeons compared to commercial alternatives.

VR Authentication with Evaluation

Jan. 2023 - Oct. 2023

- Designed a novel VR authentication method combining symbolic input and contextual cues.
- Created a 3D interactive compass with directions as passwords using Unreal Engine.
- Conducted a mixed-method multi-session user study with 32 participants to evaluate efficiency, memorability and security metrics.
- Published a paper in IEEE ISMAR 2024 as co-first author.

Virtual Patient Simulation for Nurse Training

Sept. 2021 - Present

- Cooperated with nursing experts to design a VR system for evaluating nursing competency.
- Developed two interactive VR nurse training scenarios in Unity with customized patient avatars with natural communication capabilities, enabling real-time verbal feedback to users for a realistic training experience.
- Designed the interview questions and interviewed participants for their qualitative feedback on the application as well as quantitative subjective evaluation.
- Conducted two mixed-method user studies iterative design, and evaluated the system with 18 nursing students, resulting in a 45% increase in confidence and improved procedural skills, critical thinking and decision-making.

Communication Technology & Social Behavior in VR

Sept. 2020 - Present

- Partnered with psychologists to study social behavior differences between web-conferencing and VR.
- Deployed a multi-user VR application to Oculus Quest with Unity/C#, supporting voice and animation synchronization using Photon PUN 2.
- Built a variant application with host privilege to control the VR users on Windows & MacOS.
- Trained 10+ undergraduate research assistants to use the developed system.

Motion Sickness: Postural Sway Analysis in VR

Sept. 2019 - May. 2020

- Teamed up with kinesiologists to analyze postural sway patterns when users' motion sickness level change.
- Programmed a software collecting raw data from a balance board for postural sway measurement.
- Wrote a software capable of collecting raw data from most commercial VR devices.

Teaching & Mentoring Experience

Graduate Teaching Assistant (University of Minnesota)

Sep. 2022 - Present

- CSCI 5609 Visualization (Spring 2025)
- CSCI 2033 Linear Algebra (Fall 2024)
- CSCI 4611 Programming Interactive Computer Graphics and Games (Spring 2024)
- CSCI 4511W Introduction to Artificial Intelligence (Fall 2022 Spring 2023)

Peer Reviews

- 2025 ACM CHI, ACM VRST, IEEE VR, IEEE ISMAR
- 2024 ACM CHI, ACM VRST, ACM SUI, IEEE VR, IEEE ISMAR
- 2023 UbiComp/ISWC ISWC Notes and Briefs

Reference Letters

Prof. Evan Suma Rosenberg (Ph.D. advisor): Associate Professor, UMN

Email: suma@umn.edu